Dec 17

December 17th is the official anniversary of the first human flight in a powered, heavier-than-air plane, so to mark this historic event we have taken a look at how flight has been mastered by both animals and humans.

The Wright Flight

Little did the Wright Brothers know that when they boarded their muslin-covered, wooden plane on that December morning that they would be paving the way for aviation as we now know it. It is astounding to think how far air travel has come in the last 108 years. We now have planes that can carry over 500 passengers to the other side of the world, in extraordinary comfort in less than 24 hours, the prospect of which back in 1903 would have sounded like something fresh from the pages of a science-fiction novel!

Photo of the first successful flight of the Wright Flyer, by the Wright brothers.

First successful flight of the Wright Flyer, by the Wright brothers.


Animal Inspiration?

Animals conquered flight long before 1903, admittedly in a slightly different fashion. It has proved such a successful strategy that it has evolved independently four times in birds, bats, insects (and pterosaurs), and each of the extant groups is still going strong.

Photo of a Mauritian flying fox in flight

Bats are the only group of mammals to have evolved the ability to fly.

Bats are the second most diverse group of mammals and the only mammal to have developed true powered flight. Birds have the most species of any class of terrestrial vertebrates, and there are more species of insect than all other animals added together, so they must be doing something right!

Photo of a Harlequin ladybird in flight

Insects are the only class of invertebrate that can fly.


Glorious Gliders

The Wright Brothers started out building gliders before honing their designs and moving onto powered flight. Gliding is also a popular strategy in the natural world and can be seen in mammals including the northern flying squirrel. This nocturnal mammal glides between trees using a fold of skin that stretches between its wrists and ankles. This parachute effect allows it to travel up to 45 metres in a single glide, using its tail as a rudder.

Photos of the northern flying squirrel

The northern flying squirrel can glide as far as 45 metres.


Recipe For Success

So why was it that the Wright Brothers succeeded when so many others had tried and failed? The answer is quite simple; they had achieved both power and control, using a specially designed lightweight engine and controls that allowed the pilot to steer effectively. One of the best examples of powerful, controlled flight in birds has to be the kestrel. Kestrels hunt by sight and are able to hover perfectly still in mid air, even in heavy winds. Once they have locked their sights onto their prey they are able to dive to capture it with incredible accuracy.

Photo of a kestrel in flight

Kestrels exhibit both power and control in flight.


Did you know?

  • The wandering albatross has the largest wingspan of any bird, measured at over 3.5 metres, and spends the majority of its life in flight.
  • The bee hummingbird is the smallest bird in the world and has the smallest wingspan of any bird. It is capable of beating its tiny wings up to 80 times a second.
  • One of the heaviest flying birds is the kori bustard which can weigh as much as 20 kilograms.
  • The longest invertebrate annual migration is carried out by the monarch butterfly across North America.
  • The longest bird migration is undertaken by the Arctic tern which traverses the globe on its annual pole to pole journey, meaning it sees more sunlight each year than any other animal.


Photo of an Arctic tern adult feeding young

Arctic terns undertake the longest bird migration

Photo of a wandering albatross in flight against stormy sky with pair displaying in backgroud

The wandering albratross has a huge wingspan!










Brilliant Biomimicry

The natural world has long been used as inspiration for technological advances, particularly with when it comes to flight. Leonardo da Vinci was a keen observer of the anatomy and flight of birds and even the Wright Brothers were thought to have studied pigeon flight. As our understanding of biomechanics and animal movement advances it will be exciting to see what’s next for biologically inspired engineering – here’s to seeing what the next 108 years bring!

Laura Sutherland, ARKive Education Officer